Advanced Space successfully completes 6-month CAPSTONE primary mission at the Moon for NASA

Advanced Space successfully completes 6-month CAPSTONE primary mission at the Moon for NASA

Enhanced Mission to continue testing near-lunar communication and navigation technologies for months to come.

Advanced Space’s pioneering commercial satellite has completed its primary 6-month mission operating in the Near Rectilinear Halo Orbit (NRHO) that will be utilized by the Gateway lunar space station. CAPSTONE’s enhanced mission will continue to focus on demonstrating lunar operations and navigation technology. To mark the end of the Primary Mission, Advanced Space is providing an update on the mission’s accomplishments. While the completion of the Primary Mission is a significant milestone, the CAPSTONE mission is not complete. The mission team, led by Advanced Space, is now planning and preparing to execute the “Enhanced Mission” phase, which will extend the CAPSTONE spacecraft’s time in the NRHO up to 12 months.
The CAPSTONE mission has accomplished a tremendous amount since entering the NRHO 6 months ago. CAPSTONE’s Primary Mission began after a second correction maneuver inserted the spacecraft into orbit. Since then, the microwave sized CubeSat completed 28 orbits and 7 maneuvers while enduring 6 lunar eclipses with a maximum duration of 74.32 minutes. The Advanced Space Team has delivered 89 published orbit determination solutions using more than 315,000 measurements from the Deep Space Network including the site at Morehead State University. This was a critical capacity added to DSN to support CAPSTONE which was the first mission to use Morehead for deep space operations.
In addition to testing a fuel-efficient trajectory to reach NRHO, CAPSTONE is helping NASA test future communication and navigation technologies for operating on or in the vicinity of the Moon. The spacecraft will continue to demonstrate critical technologies that will support future missions to the Moon.

CAPS – Testing for the future

CAPSTONE tested navigation technology akin to Earth’s global positioning system (GPS). This technology, CAPS, Cislunar Autonomous Positioning System, was developed by Advanced Space. After working with the Lunar Reconnaissance Orbiter (LRO) team for over 2 years, Advanced Space was able to collect crosslink measurements between CAPSTONE and LRO during a recent experimental attempt on May 9th. During this experiment, the CAPSTONE spacecraft sent a navigation signal to LRO which was subsequently sent back to CAPSTONE. From the returned signal, CAPSTONE was able to compute its range and trajectory which can be used to determine the positioning of both the LRO and CAPSTONE spacecraft. This was a primary objective for the mission which sought to demonstrate its CAPS technology which provides autonomous onboard navigation. Using the gathered data, the team will look to improve subsequent crosslink demonstrations and continue to work towards demonstrating operational feasibility. In the future, additional data types will be demonstrated and incorporated into CAPS to deliver navigation knowledge to users in orbit and on the surface of the Moon.

Extended mission plans will be considered beyond this next mission phase if the spacecraft continues to weather the conditions posed by  lunar radiation and thermal environments.

Operational lessons learned – shared with NASA and infused into other upcoming missions.

The CAPSTONE mission has overcome multiple challenges on its way to the Moon and to completing its Primary Mission. These challenges have provided numerous lessons learned for the team on how to improve operations on the way to and operating at the Moon that will support future missions. Specifically, Advanced Space has briefed NASA program teams and continues to support technical interchanges so that lessons learned can be infused to support national objectives with regard to the Moon. These valuable insights have been shared with NASA Johnson Space Center and will be shared with NASA Goddard Space Flight Center next month which is fitting as Goddard is where CAPS as a technology started in 2017 as a Phase I SBIR.

Picture

The CAPSTONE spacecraft is equipped with an imager. This imager was included to support technology demonstration as well as public awareness objectives. Three in-flight imager tests have been conducted, all taking place after the start of the primary mission. Imaging activities will continue as the spacecraft’s close approaches to the lunar surface allow resolution of some features.

The image included in this post was captured on the 3rd of May 2023 at 15:11 UTC. At this time, the spacecraft was near its perilune—the spacecraft’s closest approach to the Moon—which occurs approximately above the Moon’s North pole. The center of this image is approximately located at 25° N, 85° E on the lunar surface.

What’s next

CAPSTONE’s Enhanced Mission phase will continue collecting additional crosslink measurements and one-way uplink measurements from the Earth. Continued operations also will emphasize increasing efficiency and automation by the flight dynamics system as a precursor to multi-mission support in the future. 

Award Winning Mission  – NASA and industry awards

Thank you to NASA, our mission partners, and everyone who has supported us through this journey. We are excited to have completed this important operational milestone and look forward to ongoing operations of the spacecraft at the Moon and future missions it will support.

AIAA Small Spacecracft Mission of the Year 2022

Commercial Spaceflight Federation (CSF) Commercial Space Pioneer Award

NASA Honor Group Achievement Award

About CAPSTONE™:  CAPSTONE Press Kit

CAPSTONE™ is owned and operated by Advanced Space. It is one of the first CubeSats to fly in cislunar space – the orbital area near and around the Moon – and demonstrate an innovative spacecraft-to-spacecraft navigation technology. The mission launched on June 28, 2022. Critical partners in the CAPSTONE mission include:

    • NASA: CAPSTONE’s development is supported by the Space Technology Mission Directorate via the Small Spacecraft Technology and Small Business Innovation Research programs at NASA’s Ames Research Center in California’s Silicon Valley. The Artemis Campaign Development Division within NASA’s Exploration Systems Development Mission Directorate supported the launch and mission operations. NASA’s Launch Services Program at Kennedy Space Center in Florida was responsible for launch management. NASA’s Jet Propulsion Laboratory supported the communication, tracking, and telemetry downlink via NASA’s Deep Space Network, Iris radio design and groundbreaking 1-way navigation algorithms.
    • Terran Orbital CorporationSpacecraft design, development and implementation, hardware manufacturing, assembly, testing and mission operations support.
    • Stellar Exploration: Propulsion subsystem provider.
    • Rocket Lab USA, Inc.: Launch provider for CAPSTONE on a three-stage Electron launch vehicle.
    • Space Dynamics Lab (SDL): Iris radio and navigation firmware provider.
    • Orion Space Solutions (formerly Astra): Chip Scale Atomic Clock (CSAC) hardware provider necessary for the 1-way ranging experiment.
    • Tethers Unlimited, Inc.: Cross Link radio provider.
    • Morehead State University (MSU): Operates the newest “affiliated node” on the NASA Deep Space Network (DSN). Providing telemetry, tracking and control services for NASA and commercial space missions and to engage university students in deep space mission operations.
The Artemis Generation: To the Moon — this time to stay!

The Artemis Generation: To the Moon — this time to stay!

We are in a new era of lunar exploration, development and settlement.

Originally posted to Space.com on 16 April 2023.

On June 28, 2022, CAPSTONE launched into space on a dedicated rocket as the first mission of the Artemis program, ushering in a new generation of lunar exploration, development and settlement. With NASA’s leadership and global involvement, we are entering a period that will define the future of space exploration: the Artemis Generation.

As the architects of CAPSTONE, our team has learned first-hand the challenges of lunar missions. From communications and propulsion anomalies to suspected radiation upsets, traveling to the moon and operating there is not an easy task. During these challenges, however, the best of the industry united and we overcame — such alignment is the key to successful long-term lunar development. (more…)

CAPSTONE Mission: 17 April 2023 Update

CAPSTONE Mission: 17 April 2023 Update

The CAPSTONE Mission Team has been busy continuing to operate the mission in its planned Near Rectilinear Halo Orbit (NRHO). Thus far, since performing the NRHO insertion maneuver on November 13th, 2022, the spacecraft has spent 154 days operating in the NRHO completing 23 NRHO revolutions. During this time, the mission team has maintained knowledge of the spacecraft state well within the mission requirements using ground-based navigation tools and tracking measurements collected by the Deep Space Network including DSS-17 which is an affiliated site at Morehead State University in Kentucky. This navigation information has continued to support the design and execution of required maneuvers to maintain the orbit. Minimum maneuver size constraints have been sequentially reduced as the combined mission operations teams at Advanced Space, Terran Orbital, and Stellar Exploration continue to mitigate issues with a thruster valve. Since entering the NRHO the spacecraft has executed six Orbit Maintenance Maneuvers (OMM) using approximately 1.8 m/s of fuel. Although the mission plan was originally to do a maneuver every NRHO (approximately once a week), the higher burn threshold has reduced the number of maneuvers performed while also demonstrating the robustness of the stationkeeping strategy utilized by the mission which is the same strategy planned for the Lunar Gateway. (more…)

CAPSTONE Mission Demonstrating Utility and Resilience at the Moon

CAPSTONE Mission Demonstrating Utility and Resilience at the Moon

The CAPSTONE spacecraft continues to operate at the Moon and the vehicle is happy and healthy. The mission has accomplished 4 mission objectives and is making progress on additional objectives. Two mission objectives were completed during the transfer to the Moon and both directly informed Artemis 1 secondary payloads with regard to radio and ground station performance. (more…)

Utilization and Validation of DSS-17 on the CAPSTONE Lunar Mission

Utilization and Validation of DSS-17 on the CAPSTONE Lunar Mission

Presented at the 33rd AAS/AIAA Space Flight Mechanics Meeting 2023

MichaelR. Thompson, and Mitchell Rosen

ABSTRACT

The Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) mission is an ongoing mission to serve as a pathfinder for cislunar operations and navigation for the Lunar Gateway and the greater Artemis program. As part of nominal operations, one of the tracking dishes that CAPSTONE utilizes is DSS-17 at Morehead State University. Through a series of necessary corrections, CAPSTONE has been able to generate radiometric measurements using this dish on the same order of noise magnitude as typical DSN measurements. This paper will provide an overview of the necessary processes and early performance of DSS-17 in CAPSTONE orbit determination.

(more…)